COÛTS ET BÉNÉFICES DANS
LES MODÈLES MUTUALISTES :
LE PROBLÈME DES
MARCHÉS BIOLOGIQUES

OLIVIER PERRU

ABSTRACT. In this paper we consider mutualism and biological markets from an epistemological viewpoint. Dynamical population’s models don’t allow for the benefits and costs of mutualism. In his studies, Steven A. Frank considers these benefits and costs are expressed in the increasement or reduction of the growth rate of genotypes, extending this perspective to the population level. At the organism level, Keeler’s models of costs and benefits posit a theoretical representation of plant-fungus interacting to some degree. However, biological markets seem more be more precisely expressed as the balance of trade. Classic economic theory shows that nations or firms can benefit from specializing in their production and trading with others. These models adequately describe the adaptation of mycorhizal fungi. Generally, mutualistic symbioses correspond more to these models than to facultative mutualisms (as mutualistic pollination).

KEY WORDS. Mutualism, mutualistic models, benefits, costs, biological markets, economic theory.

1. INTRODUCTION

Définissons succinctement le mutualisme. Le mutualisme est une association biologique de deux organismes d’espèces distinctes en vue d’un bénéfice mutuel aux deux espèces. Cette association est souvent une association lâche, où les deux espèces ne vivent pas toujours ensemble dans le temps et le lieu ; il suffit qu’il y ait des rencontres à des périodes déterminées pour qu’il y ait mutualisme (comme dans l’exemple darwinien du trèfle et du bourdon 1). Le concept de mutualisme se cristallise à la fin du XIXe siècle autour de la notion d’entraide mutuelle.

Au XIXème siècle, Van Beneden est pratiquement le premier auteur à étudier sérieusement le mutualisme comme un phénomène biologique dans le règne animal. Il éprouve une difficulté à cerner les caractéristiques

EA S2HEP, Sciences, Société, Historicité, Education, Practiques. Université de Lyon, Université Lyon 1, France. / olivier.perru@univ-lyon1.fr

de cette nouvelle catégorie des mutualistes, notamment par rapport aux commensaux. Reprenant un exemple bien connu dès l’Antiquité, l’association entre la pinne et le pinnothère, Van Beneden écrit : « L’association tourne à l’avantage de tous les deux, les restes que le pinnothère abandonne sont repris par le mollusque. C’est le riche qui s’est installé dans la demeure de l’aveugle et le fait participer à tous les avantages de sa position. Les pinnothères sont, à notre avis, de vrais commensaux 2». La description de cette association n’est pas nouvelle mais ce qui est nouveau, c’est de parler de commensalisme. Si l’enjeu de cette relation (obligatoire) est l’avantage des deux partenaires, s’agit-il encore de commensalisme ou doit-on définir la nouvelle catégorie du mutualisme ? En effet, Van Beneden définit le commensalisme par le partage du même repas, mais dans le cas de la pinne et du pinnothère, il y a plutôt échange de services mutuels 3. Van Beneden reconnaît de fait qu’il existe aussi des animaux « qui se rendent mutuellement des services », qui « se prêtent un abri » ou « on entre eux des liens sympathiques qui les rapprochent toujours les uns des autres 4». Ce sont des mutualistes, mais malgré ces caractéristiques qui paraissent précises, il est habituel de les confondre « avec les parasites et les commensaux 5». Au début de l’ouvrage, Van Beneden a d’ailleurs tenté une timide définition synthétique : « On voit des animaux qui se rendent mutuellement des services. Il serait peu flatteur de les qualifier tous de parasites ou de commensaux. Nous croyons être plus justes à leur égard en les appelant mutualistes, et le mutualisme prendra place à côté du commensalisme et du parasitisme 6». Il faut ajouter à cela que le premier texte où Van Beneden définit le commensalisme et le mutualisme date de 1869, c’est un article scientifique alors que l’ouvrage de 1875 peut se lire comme un texte de vulgarisation 7.

Il a toujours été difficile considérer le mutualisme comme un cas de symbiose. A la fin du XIXe siècle, on a deux types d’approches de la symbiose : une approche la plus étendue possible de la symbiose comme écosystème, interdépendance mutuelle de deux organismes spécifiquement distincts (voire d’un hôte ou d’une population d’hôtes et d’une population de symbiotes) et culminant dans un phénomène d’intégration, et une approche de la symbiose par l’économie, dont le prototype serait le mutualisme symbiotique avec (également) co-intégration physiologique des deux organismes. Dans une perspective plus écologique ou populationnelle, tout phénomène mutualiste entre espèces ou populations peut être considéré comme un cas de symbiose, mais ce sont les cas d’intégration physiologique plus poussée qui sont plus explicitement des symbiose ; dans une perspective économique, on approchera le mutualisme par le bénéfice mutuel au plan individuel et on aura tendance à parler de mutualisme symbiotique si et seulement si y a intégration physiologique. Comme pour la symbiose, on retrouve dans la définition
du mutualisme une approche plus écologique (par étude des dynamiques de population) et une approche plus économique (par étude des coûts et bénéfices individuels).

une nouvelle extension du modèle dit de Lotka et Volterra à un ensemble de phénomènes mutualistes.

Au tournant des années 2000, les modèles théoriques de coûts et bénéfices, d’incidence du mutualisme sur la fitness des organismes mutualistes se répandent : interactions mutualistes au plan de la fitness des caractères, échanges de ressources, etc. Ils correspondent à une définition économique du mutualisme : le bénéfice est défini au niveau individuel, au plan de la fitness relative des organismes qui participent ou ne participent pas à l’interaction. Cette définition est particulièrement appropriée à des questions d’évolution mais elle est inadéquate si on considère que les phénomènes biologiques impliquent un équilibre populationnel, en termes d’adaptation. L’autre définition considère effectivement les conséquences du mutualisme au niveau de la population, elle n’insiste pas sur les coûts ni sur les bénéfices ; « c’est la définition implicite que l’on utilise lorsqu’on applique au mutualisme les équations de Lotka-Volterra ».

Dans les relations mutualistes, les seuls modèles inspirés des travaux de Lotka et de Volterra s’avèrent donc insuffisants dans la mesure où ils ne tiennent compte que des variations d’effectifs et de leurs causes (la symbiose ou le mutualisme, l’antagonisme (prédateur ou parasitisme), la limitation des ressources...). Ces modèles traduisent toute la réalité biologique en variations d’effectifs, ces variations étant entièrement dépendantes des quelques paramètres que l’on a introduit dans le modèle, tels que la natalité ou la mortalité de l’hôte et du symbiote, donc la croissance de leurs populations respectives, l’influence de tel antagonisme ou de telle relation mutualiste sur la population de l’espèce qui nous intéresse, etc. On peut faire quelques remarques à ce propos :

— Les effectifs ne traduisent pas toute la réalité biologique. Ils en constituent l’aspect démographique. L’autre façon de considérer la relation mutualiste est le point de vue économique. Chaque espèce partenaire de la relation mutualiste consent à un coût de cette relation et elle en reçoit un bénéfice. Il semble que les concepteurs de modèles mathématiques du mutualisme aient toujours été plus ou moins tributaires de conceptions anthropomorphiques des phénomènes biologiques : le point de vue économique, et dans une certaine mesure, une dynamique des populations qui pourrait (au moins chez Lotka) avoir des ressemblances avec la démographie humaine.

— Tel phénomène biologique (parasitisme, prédation ou mutualisme) ne domine pas forcément la dynamique de telle population. Or, les théoriciens comme Volterra ou Kozitizin ont supposé en leur temps que telle relation mutualiste ou telle relation antagoniste conditionne entièrement la dynamique des populations. La réalité est plus complexe et on
doit pouvoir faire la part de plusieurs facteurs. A ce sujet, Schwartz et Hoeksema écrivent :

Equilibrium modes, such as the Lotka-Volterra equations, generally assume that the most important interactions for population regulation are described within the model. It seems plausible, however, that species may develop mutualistic relationships with other species that, while important, do not dominate population dynamics.

De plus, les théoriciens des années 1930 ont, comme nous l’avons vu, surtout mis en valeur des points d’équilibre entre populations. Il en est de même pour des études plus récentes qui reprennent et développent les intuitions de Lotka et Volterra. Or, Schwartz et Hoeksema écrivent, à la suite du texte cité plus haut :

Secondly, two-species population-level equilibrium models analyze the behavior of interactions at local equilibrium points. Empirical examples, however, show that mutualisms may have the strongest effects on populations away from equilibrium.

L’équilibre entre populations n’est pas forcément le lieu d’effets mutualistes plus forts. Pour la pollinisation des végétaux, tout dépend de la disponibilité (offre) des pollinisateurs, les populations d’insectes sont parfois en nombre suffisant quelle que soit la densité d’une espèce végétale; dans d’autres cas, le nombre d’insectes pollinisateurs disponibles peut jouer un rôle très important. Il existe de nombreux systèmes mutualistes complexes où plusieurs espèces d’insectes peuvent polliniser la même espèce végétale ; la compétition entre insectes est alors plutôt interspécifique. Mais, dans cette offre de la plante à l’égard des pollinisateurs, il est rare qu’une espèce d’insecte épuise la ressource offerte par une espèce de plante et la rende inutilisable pour les autres espèces d’insectes. Donc, l’équilibre prévue par Lotka et Volterra n’est pas toujours réalisable aux environs d’un point médian dans l’échelle des effectifs possibles de mutualistes. Notons donc que dans cette perspective, la notion économique de rapport entre l’offre et la demande semble pertinente et qu’elle souligne que les populations peuvent évoluer loin de l’équilibre.

Tout ce que nous venons d’écrire suggère un passage du niveau populationnel au niveau individuel. Schwartz et Hoeksema suggèrent que l’évolution du mutualisme puisse se faire davantage au niveau de l’individu qu’à celui de la population. Cela a une incidence sur le type de modélisation à envisager. La relation de coopération mutualiste entre deux espèces peut alors demander une modélisation interindividuelle. Dans ce cas, ce ne sont plus les dynamiques de population qui seront regardées mais l’établissement de la relation en fonction des coûts et
bénéfices pour chaque partenaire, des ressources disponibles, etc. Dans ce cas, on comprend que la logique des jeux coopératifs et des simulations du type « dilemme du prisonnier » (où à chaque étape, chaque partenaire coopère ou ne coopère pas en fonction du jeu de l’autre et du gain espéré) soient plus adaptées : il s’agit de prédire l’établissement ou la rupture de la relation mutualiste selon des paramètres économiques et une approche interindividuelle.

La modélisation des systèmes mutualistes en termes de dynamique des populations fut historiquement la première tentative de modélisation et elle donna lieu au plus grand nombre de développements en écologie. Sa fécondité de même que ses limites sont incontestables. Même si, aujourd’hui, certains travaux s’appuient encore sur les modèles du type Lotka-Volterra, une nécessité de dépassement s’est fait sentir depuis plus d’une vingtaine d’années. Un modèle est toujours relatif au phénomène qu’il prétend traduire ; or, nous avons montré qu’il existe diverses divergences entre la famille de modèles dits de Lotka-Volterra et le phénomène biologique du mutualisme. Outre quelques autres modèles basés sur l’analyse mathématique mais intégrant l’évolution d’autres paramètres que les seuls effectifs, l’épistémologue est renvoyé vers l’intérêt des modèles de coûts et bénéfices (et éventuellement des jeux coopératifs) dans leur application au mutualisme.

2. DE L’ÉVALUATION DES EFFECTIFS À LA QUESTION DES COÛTS ET DES BÉNÉFICES DANS LES MODÈLES MUTUALISTES

Un auteur contemporain, Steven A. Frank, a cherché à dépasser les modèles de dynamique de populations en pensant non plus la variation d’effectifs, mais la variation de fréquence des génotypes des deux populations d’espèces différentes ; il intègre les coûts et bénéfices du mutualisme pour rendre compte de cette variation. Il semblerait que cette recherche soit intermédiaire entre des modèles de dynamique des populations, du type Lotka-Volterra et une approche plus individualisant du mutualisme en termes de coûts et bénéfices. Cependant, il y a une difficulté conceptuelle à la base de cette approche : Frank évoque un modèle de « symbiose synergique » qui semble se rapprocher du mutualisme. Mais l’insistance sur le mutualisme tout en parlant de symbiose contribue à un certain brouillage des catégories conceptuelles.

L’auteur suppose a priori un système de bénéfice mutuel. Or, ce n’est pas le cas général de la symbiose qui admet parfois un bénéfice unidirectionnel, voire des formes de parasitisme atténué. Par contre, la prise en compte de la réorganisation physique des deux co-gènes est un intérêt de cette présentation. Frank donne des exemples relevant de la génétique mendélienne classique, tout en écrivant qu’il a utilisé un langage génétique.
que standard, mais que la liaison physique pourrait aussi bien provoquer le locus hôte et le locus symbiotique bactérien à se disperser simultanément, avec une réorganisation définie par un paramètre analogue à la recombinaison²¹. L’intérêt de cette construction est de supposer, comme cela se produit chez les espèces symbiotiques, une migration des fragments ADN avec recombinaison ou au minimum, une forte interaction entre l’hôte et le symbiote. Par exemple, la symbiose pourrait impliquer la réintégration d’un morceau ADN du symbiote dans le génome de l’hôte, sous le contrôle de ses gènes.

Au plan de la modélisation, la relation entre les caractères — et donc entre les gènes — de l’hôte et du symbiote est vue en termes de fitness, c’est-à-dire de valeur sélective ; la fitness est un avantage au regard de la sélection naturelle. Frank imagine un caractère génétique du symbiote et un caractère génétique de l’hôte. Chaque caractère accroît la possibilité de reproduction du gène du partenaire mais en réduisant sa propre fitness (c’est à dire avec un coût pour lui-même). Si les valeurs de fitness sont plus élevées, elles produisent un plus grand bénéfice au partenaire à un coût plus élevé pour le donneur. Si les valeurs sont basses pour ces deux caractères, comme on l’attendrait lorsque les partenaires se rencontrent pour la première fois, la pression de sélection pousse continuellement les deux caractères vers des valeurs plus basses. Toutefois, si la paire de caractères est au dessus d’un seuil en termes de fitness, alors il peut exister un effet feedback de synergie qui augmente la fitness et accroît la coopération.

![Diagramme de fitness](image)

FIGURE 1. Effets réciproques des valeurs des caractères T_1 et T_2 dans le modèle de Steven A. Frank dans un schéma de symbiose (d’après Frank, 1995, 1997). Les flèches représentent l’action de la pression de sélection. Le point d’équilibre s’établit aux valeurs optimales de T_1 et T_2.
La courbe de la figure 1 correspond à une fonction de seuil. Au dessus, l’effet feedback (retour sur investissement) accroît la fitness des deux espèces. En termes de ratio « bénéfice - coût », il semblerait que la coopération soit comprise entre deux limites. Pour des valeurs élevées de T (caractère de l’hôte), il y a un coût d’établissement de la symbiose important, par la suite le ratio « bénéfice - coût » diminue. En dessous d’un certain seuil de T, le coût ne peut pas être supporté, car la sélection naturelle diminue la fitness des deux espèces. La symbiose s’établit donc entre deux limites acceptables pour la fitness des deux partenaires ainsi que le suggère la figure 2.

![Diagram](image)

Figure 2. Valeur du caractère de l’hôte en fonction du ratio “ bénéfice - coût ”, dans le modèle proposé par Steven A. Frank (1995, 1997).

Tel est le modèle proposé par Frank, il suppose une proximité physique des deux cogénomes. Mais à ce stade, on n’a pas encore explicité de modèle mathématique. Basé sur la génétique, ce modèle cherche à évaluer des taux de croissance (variation d’abondance) des génotypes des deux espèces en relation, on est sans doute ici dans un modèle qui tient à la fois de la variation d’effectifs (individus porteurs de tel génotype) et d’une évaluation des coûts et bénéfices retirés de la relation mutualiste entre les partenaires, envisagée d’un point de vue génétique.

La fréquence des génotypes de chaque espèce varie en fonction d’un coefficient de croissance moyen, h_{ij} ou h_{k}: en l’absence de croissance, ce coefficient vaut 1. Cette valeur est diminuée du coût du caractère symbiotique pour le donneur (y_{ij} ou y_{k}) impliquant une réduction du taux de
croissance) et augmentée du bénéfice dû à l’apport des gènes du partenaire 23,

\[a \times \sum_{k} y_{ik} X_{1k} \text{ ou } a \times \sum_{k} y_{2k} X_{2k} \]

Le taux de croissance moyen du génotype \(j \) est :

\[h_{ij} = 1 - y_{ij} + a \sum_{k} y_{2k} X_{2k} \]

Alors, pour l’espèce 1, on peut formaliser la variation de fréquence du génotype \(X_{ij} \) sous la forme d’équations matricielles et l’écrire :

\[\Delta X_{ij} = \left[h_{ij} - \sum_{k} h_{1k} X_{1k} - \sum_{k} h_{2k} X_{2k} \right] \Delta t \]

Sans préciser davantage les détails mathématiques, le modèle imaginé par Frank se caractérise par le fait que :

— Le taux de croissance moyen d’un génotype d’une espèce 1, \(h_{ij} \), est rapporté à une valeur de 1, diminuée du coût du caractère symbiotique ou mutualiste et augmentée du bénéfice tiré de l’interaction avec les gènes de l’autre espèce. C’est l’application à la variation des génotypes d’équations déjà utilisées par Volterra ou Kostitzin pour la variation des effectifs. Mais on est ici à la fois dans la perspective d’une croissance des génotypes (donc d’effectifs) et d’une logique coût/bénéfice (du fait de l’interaction entre les génomes). La présentation, très synthétique, est aussi évidemment très abstraite.

— La variation de fréquence, \(\Delta X_{ij} \), est égale au taux de croissance du génotype de l’espèce 1, diminué de l’accroissement des génotypes concurrents de l’espèce 1 et de l’espèce 2. L’auteur raisonne en termes de génotypes, et non plus en termes d’effectifs ou de fréquences de chaque population, ce qui rend le calcul beaucoup plus théorique. Peut-on mesurer des taux de croissance de génotypes impliqués dans une relation symbiotique ou mutualiste ? C’est peu évident et tout à fait improbable qu’il s’agisse de mutualisme lâches ou au contraire, de relation endosymbiotique. Le système différentiel imaginé par Steven A. Frank est donc très théorique, il peut sans doute trouver quelques applications dans un écosystème où les caractères en compétition ou en coopération sont aisément repérables 24. Il semble que de façon générale, il se prête d’ailleurs à des simulations qu’à la mise en place de véritables modélisations, au sens des sciences expérimentales.
Le modèle de ce qu’on pourrait appeler une symbiose mutualiste semble en rapport avec celui de Wladimir Aleksandrovitch Kostitzin dans *Biologie mathématique*, en 1937 25. L’auteur y envisageait la variation des effectifs des individus des deux espèces symbiotiques sous la forme d’un système d’équations différentielles, en fonction des coûts et des bénéfices dus à la symbiose et traduits en termes de natalité et de mortalité complémentaires 26. On ne retrouve pas ces termes chez Frank mais les équations traduisent la même idée d’une variation de fréquence en tenant compte des coûts et des bénéfices de la symbiose, ainsi que de la concurrence à l’intérieur des deux espèces. Frank raisonne en termes de génotypes alors que Kostitzin raisonnait en termes d’effectifs des espèces dans la symbiose. Il faut souligner que le raisonnement de Kostitzin se situe plus au niveau de la symbiose qu’au niveau du mutualisme.

En termes de variation d’abondance, l’intérêt de ces équations matricielles est de mettre en valeur les interactions dans un système dynamique et de traduire le ratio « bénéfice - coût » sous forme de taux de croissance et de variation d’abondance de génotypes au sein de chaque population. La difficulté demeure qu’on ne peut pas connaître précisément les gènes concernés, le nombre d’interactions, les valeurs à attribuer. Les équations restent la base de simulations très théoriques. La symbiose mutualiste ne démarre qu’au-delà d’un certain ratio « bénéfice - coût » et s’établit entre deux seuils, en termes de fitness de l’hôte. Lorsque le coût est faible, le caractère est très compétitif et avantageux pour l’un et l’autre des partenaires. Si le coût est élevé, le caractère est très coopératif, avantageux pour celui qui le reçoit (le donneur consent à des coûts élevés pour son partenaire). Une telle modélisation montre que du côté des coûts élevés, on se situe plus dans le cas d’une symbiose obligatoire que dans celui du mutualisme. Les coûts élevés seraient donc consentis comme le prix de la construction d’une nouvelle unité de vie entre deux partenaires (cas de l’endosymbiose, par exemple). Du côté des coûts les plus faibles, on trouverait plutôt une symbiose facultative ou le mutualisme.

Au plan génétique, les résultats obtenus par Steven A. Frank confirment qu’au-dessus d’un seuil minimal *(fitness)*, les caractères évolueraient vers un équilibre (en fonction des hypothèses posées au départ quant à la relation mutualiste) et que les coûts élevés caractérisent une symbiose obligatoire ; mais ils suggèrent aussi l’existence d’interrelations génétiques dans la symbiose et l’émergence progressive de synergie (symbioses mutualistes). Cependant le modèle n’échappe pas à la critique d’un degré d’abstraction tel qu’on se situe plus dans la simulation que dans la modélisation ; et il comporte le risque de confusion entre mutualisme et symbiose.
3. MODÈLES COÛTS-BÉNÉFICES ET MODÈLES ÉCONOMIQUES

En 1985, dans l’ouvrage intitulé *The Biology of Mutualism* et dirigé par Douglas H. Boucher, Kathleen H. Keeler, donne une synthèse des modèles connus à l’époque pour approcher les notions de coûts et de bénéfices du mutualisme. La question de la modélisation des phénomènes mutualistes a été très bien évoquée à cette époque par Kathleen Keeler et les enjeux qu’elle a repérés sont toujours actuels : 1) estimer les coûts et les bénéfices, 2) placer tous les coûts et bénéfices dans un cadre théorique qui permette la comparaison, 3) rendre mesurables les coûts et les bénéfices, afin de tester la falsifiabilité des hypothèses, 4) écrire des équations simultanées, si les deux espèces coévoluent.

L’intérêt de l’analyse de Keeler est que cet auteur a cherché à concrétiser et à simplifier les notions abstraites des systèmes mutualistes. Par exemple, les bénéfices obtenus par le mutualisme sont pour les végétaux, le nombre d’individus issus du croisement ; « les coûts de la pollinisation mutualiste » sont le manque des pollinisateurs adaptés dans certaines zones et la diminution du nombre des jours d’activité du pollinisateur. Pour calculer $W_{1'}$, la fitness des individus pollinisés par un mutualiste, l’auteur définit les paramètres suivants :

— N est la proportion théorique de graines obtenues (N pour cent de graines par fleur). L’auteur distingue N_f (proportion de graines effectivement obtenues, pour lesquelles la pollinisation entomophile est un succès) et N_u (cas d’échec de la pollinisation entomophile, toujours en pourcentage du nombre théorique de graines obtenues par fleur).

— V est la « fitness relative des graines ». On distingue donc V_f et V_u, comme dans le cas précédent. V_u n’a de sens que si la pollinisation entomophile n’est pas obligatoire, donc si la plante peut être pollinisée autrement, sinon $V_u = 0$.

— I_z est le coût d’investissement pour la plante (coloration florale, « récompense » attribuée au pollinisateur...).

— p est la fréquence des individus fécondés par la pollinisation entomophile et q est la fréquence de ceux pour lesquels ce type de pollinisation échoue. On obtient alors :

$$W_z = p(N_f V_f - I_z) + q(N_u V_u - I_z)$$

Dans le cas de la pollinisation obligatoire :

$$W_z = pN_f V_f - I_z(p + q) = pN_f V_f - I_z$$

En se rapportant aux effectifs de fleurs pollinisées par les insectes, on écrira :

$$W_z = pN_f V_z - I_z$$
Supposant que les plantes qui sont fécondées sans l’aide des insectes ont une fitness W_a, la viabilité du mutualisme suppose $W_z > W_s$ [31], c’est-à-dire:

$$pN_zV_z - I_z > N_sV_s - I_s$$

Dans le cas où la fécondation des plantes combine entomophilie et anémophilie, on écrira une équation analogue. Pour qu’il y ait pollinisation mutualiste, il faut que W_zW_a, W_s étant la fitness des plantes pollinisées grâce à l’air. On écrit alors [32]:

$$W_z > W_a \rightarrow p_zN_zV_z - I_z > p_sN_sV_s - I_s$$

Le caractère à la fois descriptif et abstrait de ces équations fait douter de leur intérêt. En réalité, un intérêt évident est de raisonner la question de la pollinisation, mutualiste ou non chez les végétaux, en terme d’avantage adaptatif, c’est-à-dire finalement en termes comptables de bénéfices. Les équations exposées ici obéissent au modèle général:

Bénéfice = Recettes – Dépenses (exploitation).

Il y a là une analogie évidente avec un raisonnement économique très général, l’analogie ne portant que sur la forme abstraite d’un compte d’exploitation, car il est très difficile (sauf dans le cas d’une expérimentation limitée) de comptabiliser l’avantage adaptatif comme représentant l’investissement des plantes dans la pollinisation entomophile. La forme de la fleur pourrait être un élément d’investissement, mais comment le prendre en compte ? Il est donc impossible de présenter la pollinisation entomophile sous la forme d’un bilan impliquant la « capitalisation » et l’investissement à long terme d’une espèce de plantes à fleur. Même au plan du modèle d’exploitation, les coûts ou dépenses (ou charges) sont difficiles à matérialiser : la fourniture de nectar aux abeilles, par exemple, serait au sens strict une dépense ou une charge pour la plante. Mais l’analogie est limitée, si la pollinisation entomophile constitue incontestablement un gain pour la plante, peut-on considérer vraiment la fourniture du nectar aux insectes comme une charge même si incontestablement, ce qui est fourni à l’insecte demande une certaine dépense de matière et d’énergie.

Le même auteur applique le même type de raisonnement aux mycorhizes. En termes de coûts et de bénéfices, l’auteur résume ce que l’on a d’ailleurs continué d’approfondir depuis la fin du XXe siècle sur le « mutualisme » des champignons et des racines des plantes, mutualisme qu’on devrait plutôt décrire comme une symbiose. Keeler écrit, au sujet des mycorhizes du champignon:
For mycorrhizal fungi interacting as mutualists with a plant root, the benefit is a regular carbon source provided by the plant. The cost is provision of water, nutrients, or possibly bacteriocides for the plant. Structurally, mycorrhizal fungi are much modified from their free-living forms; this could be either a cost or benefit, depending upon whether it increases or decreases fungal efficiency, but presumably it is most often a benefit.33

Si W_m est la fitness des champignons mutualistes (de fréquence p) et si W_n est celle des champignons non-mutualistes (de fréquence q), on écrira pour W, la fitness totale de la population des champignons :

$$W_i = pW_m + qW_n$$

Si le taux de croissance des formes libres de champignons est g_0, et si g_m est l'accroissement dû au mutualisme, alors une mesure de W_m est $g_0 + g_{mv}$ et on peut donc écrire :

$$W_i = p(g_0 + g_m) + qg_0 = (p + q)g_0 + pg_m = g_0 + pg_m$$

L'auteur considère avec raison que si g_m est l'accroissement dû au mutualisme, c'est aussi la différence entre les apports et les coûts de ce mutualisme. Si b_m est l'apport en composés carbonés, c_m le coût accru de la fourniture en éléments nutritifs et en eau, s_m l'apport ou la dépense accrue en énergie et si f_{mp} mesure la croissance du champignon symbiotique en contact avec une proportion p de plantes le recevant, on peut écrire :

$$g_m = b_m - c_m + s_m + f_{mp}$$

et

$$W_i = g_0 + p(b_m - c_m + s_m + f_{mp})$$

A partir de cette équation et de ces divers paramètres, on peut chercher à comparer l'action d'un champignon mutualiste et celle d'un parasite, ce que fait l'auteur. Nous n'évoquerons pas cet aspect afin de nous concentrer sur les modèles de mutualisme. Le texte auquel nous faisons référence développe quelques autres exemples, en particulier sur les fourmis. Il introduit surtout une discussion sur les interactions mutualistes à partir du modèle de Joane Roughgarden pour l'interaction mutualiste entre l'anémone de mer et le poisson clown. Le modèle est le suivant :

$$PL_mW_{am} + (1 - PL_m)W_{as} > PL_pW_{ap} + (1 - PL_p)W_{as}$$

L_m est la probabilité de survie de l'anémone de mer associée à son ‘convive’ mutualiste ; L_p est la probabilité de survie d'un hôte associée à un parasite, W_{am} est la fitness du mutualiste dans l'association, W_{ap} est la
fitness du parasite dans l’association, \(W_{sp}\) est la fitness du poisson qui n’a pas trouvé d’hôte, \(W_{so}\) celle du solitaire, \(P\) étant la probabilité de la symbiose. Ce modèle est un peu plus complexe que les précédents, mais on reste, somme toute, dans le même type de raisonnement. L’auteur résume bien la situation en considérant que les mutualismes choisis représentent un large spectre, les modèles ayant été adaptés à chaque situation [36].

A partir de ce bref exposé de la situation du mutualisme dans les exemples que nous avons cités, la question qui peut se poser est celle de l’adaptation de ces modèles à la recherche contemporaine sur le mutualisme. Schwartz et Hoeksema considèrent le mutualisme comme l’expression d’un marché biologique entre l’hôte (par exemple la plante) et le symbiose ou le mutualiste (par exemple, le champignon). Au sujet de ce « biological market », les auteurs écrivent :

We use the relationship between plants and their mycorrhizal associates as a backdrop to describe how resource trade may facilitate selection for resource specialization and mutualistic interactions. Economic theory tells us that nations benefit by specializing in production of certain goods and trading with other nations, rather than producing all commodities themselves [37].

Ce qui est nouveau ici est le recours explicite à la théorie empruntée à Mill et à Ricardo pour rendre compte des réalités biologiques de la spécialisation des fonctions entre la plante et le champignon et du caractère réciproque de l’échange et du bénéfice. En réalité, c’est une approche nouvelle en termes de modélisation biologique dans les années 1990-2000, mais de façon plus générale, il n’est pas historiquement nouveau de considérer un système vivant comme un système de production, sous l’angle de la division des fonctions. Il y eut de nombreux textes biologiques et sociologiques sur l’organisme et la division du travail au XIXe siècle, au moment même où on découvrait la symbiose et les mycorhizes.

La problématique des « biological markets » est donc d’accroître ses ressources par la spécialisation s’articulant autour de la division des fonctions [38], donc autour de l’échange en vue de la nutrition et de la croissance du complexe hôte-symbiose, le modèle choisi devra supposer que chaque partenaire produit au moins une ressource nécessaire, exprimée sous forme d’unités acquises au cours de l’année (en carbone et en phosphore par la plante, par exemple). L’acquisition de chaque ressource \(R_1\) et \(R_2\) débouche sur la consommation de cette ressource et sur l’échange. S’il n’y a pas d’échange entre les deux partenaires, le végétal a à sa disposition une quantité \(R_1\) de carbone et une quantité \(R_2\) de phosphore absorbable par les racines, selon l’équation :

\[R_1 = -JR_2 + R_{1\text{max}} \]
I est un ratio de coût d’acquisition du phosphore en situation d’isolation
(I = R_{1\text{max}} / R_{2\text{max}}) est le rapport du nombre d’unités de phosphore (à
acquérir, coût) au nombre d’unités de carbone (acquises, bénéfice). C’est
un ratio coût/bénéfice. Supposant un échange, le ratio pour les deux
individus devient T et on peut écrire :

\[R_{1t} = -TR_{2t} + R_{1\text{max}} \]

\(R_{1t} \) et \(R_{2t} \) étant cette fois les quantités de chaque ressource acquises en
symbiose (t pour trade) \(^{39}\). Chaque partenaire se spécialise autour d’une
ressource et en cède une part à l’autre. Les auteurs définissent un vecteur
de consommation optimale qui correspond à l’augmentation de \(R_{1} \) et \(R_{2} \)
lors de la symbiose mutualiste par rapport à l’acquisition indépendante
de chaque ressource par chaque partenaire. Soit \(m \) la pente de ce vecteur.
Si \(R_{1} = mR_{2} \),

\[R_{1t} = -TR_{2t} + R_{1\text{max}} = T(R_{1}/m) + R_{1\text{max}} \]

\[R_{1t} (1 + T/m) = R_{1\text{max}} \]

\[R_{1t} = R_{1\text{max}} / (1 + T/m) \], de même \(R_{2t} = R_{1\text{max}} / m + T \)

On peut aussi donner la formule du gain G comme étant la distance
euclidienne entre \(R_{1} \) et \(R_{1t} \) d’une part, \(R_{2} \) et \(R_{2t} \) d’autre part. Une difficulté
de ce type de modélisation est que ce cas d’école ne se rencontre pratiquement
pas comme tel dans la nature. Pour sa nutrition en éléments minéraux, une plante est soumise à de multiples facteurs de variation non réductibles à ce type d’équations. Ces facteurs sont :
— la densité de l’espèce et la spécificité (ou la non-spécificité) des
champignons mutualistes,
— les différences des coûts et bénéfices pour les diverses espèces fongiques
mutualistes,
— les différences de taux d’éléments minéraux à la surface du sol en
fonction de paramètres pédoclimatiques (variations au cours de l’année,
par exemple),
— la quantité de ressources minérales directement utilisables par les
racines de la plante et la quantité rendue disponible par le symbiotte.
Il faut alors envisager des modèles plus complexes intégrant « la flexibilité
d’une espèce dans le changement de disponibilité de la ressource \(^{40}\),
Sans rentrer dans l’ensemble de ces modèles possibles, on peut comprendre
qu’il y ait des variations sur les isoclines d’acquisition de telle ou telle
ressource (voir figure 3). L’isocline d’isolation suppose l’autonomie de la
plante et l’antagonisme des deux ressources. L’isocline concave implique
que l’obtention de la ressource 2 à partir du mutualiste a un effet feedback
négatif sur l’acquisition de la ressource 1 et favorise donc la spécialisation
de chaque partenaire plutôt que le mutualisme. L’isocline convexe traduit un effet bénéfique de l’obtention de la ressource 2 qui, à quantité égale, accroît la disponibilité de la ressource 1 par rapport à la situation d’indépendance mutuelle.

![Graphique de l’isocline convexe et concave](image)

FIGURE 3. Échange de ressources entre une plante et un champignon d’après le modèle mutualiste de Mark W. Schwartz et Jason D. Hoeksema pour une plante vasculaire (1998). L’isocline concave traduit un feedback négatif entre R₁ et R₂, il favorise donc la spécialisation. L’isocline convexe diminue la spécialisation et favorise l’échange de ressources.

Ces modèles de bénéfice mutuel étayent donc l’hypothèse selon laquelle par la spécialisation et l’échange, les individus peuvent de façon significative mais pas infinie, améliorer leurs ressources et accroître leur fitness. 41 A la différence des modèles de la famille Lotka-Volterra, ces modèles par coûts et bénéfices ne supposent pas une stabilité de deux populations ; ce sont des modèles associant coût, bénéfice et fitness. Ils définissent des conditions sous lesquelles les interactions continuent à profiter aux deux partenaires. Cela introduirait à une conception des systèmes mutualistes. Mais au-delà des pères fondateurs du libéralisme comme Mill ou Ricardo, peut-on relier cette notion d’échanges de biens et services à des modèles précis en sciences économiques contemporaines ? Peut-on vraiment parler dans ce cas de « marché biologique » ?

Dans un article de 2000 publié dans la revue *Oecologia*, Hoeksema et Bruna cherchent à classer les modèles mutualistes selon le critère de

Dans la perspective du modèle décrit dans l’article de Schwartz et Hoeksema (1998), au-delà des mycorhizes, une extension à d’autres systèmes mutualistes semble nécessaire ainsi qu’une vérification a posteriori de ce modèle des marchés biologiques sur des données expérimentales issues de systèmes écologiques. Chercher à universaliser un tel modèle et à le vérifier empiriquement semble logique dans l’intention d’intégrer le mutualisme dans une théorie des marchés biologiques qui ne serait elle-même qu’un sous-produit de la théorie économique du commerce international. Nous pouvons citer ici le texte de Hoeksema et Bruna qui semble très paradigmaticque de cet ancrage économique de l’approche des marchés biologiques :
The basic economic theory of international trade among nations, upon which the model of Schwartz and Hoeksema (1998) is based, makes one potentially useful prediction that has not been explored in the biological market framework to date. As discussed by Leighton (1970), in some situations, two nations can each benefit from specialization and trade even if they do not differ in their relative abilities to produce two commodities. As long as the two nations differ in their relative preferences or needs for two commodities, they can still profit from specialization and trade. In a biological market, this situation would be analogous to two species having different relative preferences for two different nutrients, for example. In that case, each species, in isolation from trade, would perceive a higher price for the nutrient that they ‘prefer.’ With the possibility of specialization and trade, each species should specialize in acquisition of the nutrient that they do not prefer, and trade for the one that they prefer 46.

Ce texte semble paradoxal ; il veut simplement dire qu’en l’absence de mutualisme, une plante doit utiliser davantage de carbone pour recevoir de l’environnement l’azote ou le phosphore ; en cas de mutualisme, la plante spécialisée dans la fourniture de carbone acquiert de son mutua liste beaucoup d’azote ou de phosphore à un faible coût pour elle (cas optimal de la courbe convexe, figure 3).
Il existe d’autres modèles de « l’économie mutualiste » dans la nature : le modèle de Kummel et Salant se développe sur la base d’autres hypothèses que ce que fait celui de Schwartz et Hoeksema et il aboutit donc à des résultats différents 47. Kummel et Salant considèrent que « Schwartz et Hoeksema (...) réinterprètent la théorie standard du commerce international » et qu’ainsi la généralisation de leur analyse à plusieurs champignons a déjà été étudiée dans la littérature économique. Comme l’article de Schwartz et Hoeksema, celui de Kummel et Salant se base sur une théorie de l’échange. Mais les hypothèses, les méthodes et donc les prédictions des résultats sont différents. De fait, une nouvelle hypothèse intervient chez ces auteurs ; c’est la différence du coût d’acquisition d’un élément comme l’azote ou le phosphore par la plante, selon l’espèce de champignon engagé dans la symbiose. Or, dans le texte précédent, le coût unitaire d’une ressource est la même quelle que soit la quantité échangée et quels que soient les partenaires de l’échange. La linéarité des isoclines reflète l’unité de cette monnaie d’échange. Ce qui intervient ici et c’est très intéressant, c’est la possibilité d’appliquer la notion de prix en biologie. Cependant, il semble que ces auteurs rattraperaient cette idée d’un unique « prix » de la ressource « achetée » au partenaire par les hypothèses qu’ils introduisent à la fin de leur étude, notamment l’hypothèse de différences de coûts et bénéfices pour diverses espèces fongiques mutualistes et ils aboutissent effectivement à une flexibilité qui donne des isoclines convexes ou concaves (Cf. figure 3).
En fait, la différence méthodologique est que Schwartz et Hoeksema s’appuient encore sur la réalité biologique alors que l’article de Kummel et Salant applique à un cadre biologique, une analyse économique de minimisation des coûts, c’est-à-dire des prix « variables par hypothèse » et donc de la quantité de ressource 1 acquise par unité de ressource 2. Voici comment les auteurs décrivent leur méthode : la plante assimile le carbone par la photosynthèse et elle en utilise une certaine quantité pour ‘acheter’ de l’azote aux champignons mycorhiziens associés. L’hypothèse de base est que si la plante donne plus de carbone à un champignon, elle en reçoit plus d’azote en échange. La plante a une capacité photosynthétique de C_{max} unités de carbone. Une partie de ce carbone (C_{N}) est transféré aux champignons mycorhiziens en échange d’azote ; la part restante (C_{G}) est destinée à la croissance : $C_{\text{max}} = C_{\text{G}} + C_{\text{N}}$. S’il y a livraison de C_{N} unités de carbone aux champignons ectomycorrhiziens, la plante reçoit N_{G} unités d’azote. Pour maximiser la croissance, la plante abandonne aussi peu de carbone possible en échange d’une quantité donnée d’azote. La plante est supposée sélectionner les champignons mycorhiziens les plus économies de carbone et les plus productifs en azote.

En réalité, la méthode suivie par les auteurs est un algorithme d’optimisation comme l’indique le titre de l’article. Chaque champignon f a besoin de r_{f} (N_{f}) unités de carbone afin de produire N_{f} unités d’azote. Le carbone ‘acheté’ à la plante est donc vu comme une fonction de la quantité d’azote devant être produite pour la plante, à la fois fournisseur et client : la commande d’azote par la plante semblerait donc diriger la consommation de carbone par le champignon. La difficulté est d’estimer si cela se passe bien ainsi dans la nature : le champignon mycorhizien ou la bactérie rhizobium sont bien des fournisseurs d’azote, la plante entretient ses symbiotes en matière organique, mais peut-on généraliser ce type d’équations issues des sciences économiques ? En effet, le champignon a besoin de matière organique pour sa propre survie et non pas seulement pour produire (assimiler) de l’azote pour la plante. Il y a là une petite distorsion dans la compréhension de la symbiose qui ne se réduit pas au rapport fournit de carbone/production d’azote. Dans l’hypothèse (réductrice) que font les auteurs, l’algorithme d’optimisation s’écrit donc :

$$H(N_{G}) = \text{min} \sum_{f=1}^{F} r_{f} \times (N_{f}), \text{ sachant que } \sum_{f=1}^{F} N_{f} = N_{G}$$

$H(N_{G})$ est donc la fourniture carbonée minimale en échange d’une certaine quantité d’azote N_{G}. Cela représente la quantité de carbone considérée comme un ‘paiement’ de l’azote acquis de la façon la moins onéreuse ; N_{f} représente les unités d’azote fournies.
La notion de coût marginal intervient fortement dans la modélisation. Dans la mesure où il s’agit de minimiser les coûts, le « coût additionnel d’acquisition d’une unité supplémentaire d’azote à partir du champignon f » est décisif, ce coût marginal se définit comme la dérivée première r’(Nf). L’allure générale des fonctions du type r_f(N_f) détermine le ‘choix’ du ou des champignons utilisés par la plante. Dans les fonctions de coût d’allure concave ou linéaire, un seul champignon est utilisé, c’est celui qui minimise effectivement les coûts (figure 4). Lorsque les courbes sont convexes ou faiblement concaves, la plante peut utiliser les deux partenaires à coût marginal égal.

![Diagramme 1](image1.png)

Figure 4. Coût carboné de la symbiose mutualiste en fonction de l’Azote fourni. Dans le premier cas, le champignon utilisé est celui qui minimise le coût carboné de la symbiose mutualiste. Dans le second cas (une courbe convexe et une faiblement concave), la plante peut utiliser les deux partenaires à coût marginal égal.

La généralisation de ce modèle aux autres types de mutualisme implique d’alléger les hypothèses qui sont adaptées surtout au mutualisme mycorhizien. Premièrement, l’hypothèse selon laquelle la croissance de la plante mutualiste demande la combinaison des deux ressources dans un ratio spécifique ; deuxièmement, l’hypothèse que l’azote et le carbone sont utilisés seulement pour maximiser la croissance ; troisièmement, l’hypothèse que les partenaires mutualistes (les champignons) n’interagissent pas entre eux.

Ce type de modèle a recours aux lois économiques, en utilisant la similitude supposée des phénomènes biologiques et des phénomènes
économiques. Le lecteur se demande donc si le recours à l'économie humaine pour rendre compte de phénomènes biologiques doit se faire par la similitude (transfert de connaissances de l'économie vers la biologie) ou par l'analogie (repérage de quelques caractères communs entre économie et biologie, applications aux modèles biologiques tout en respectant la distance entre les deux domaines et les spécificités de la vie biologique). La théorie des « biological markets » et des processus d'optimisation d'échanges biologiques assimilés à des échanges marchands renvoie à une autre question : celle du choix. Dans les sociétés humaines, l'acteur choisit d'acheter ou de vendre, d'optimiser un échange. Cet anthropomorphisme appliqué au végétal peut être gênant. Si on suppose que la plante engage toujours le coût le plus faible, il faut aussi penser un caractère déterministe du processus : la plante ne déploie pas une stratégie économique ou commerciale !

4. CONCLUSION

On peut se demander ce que l'épistémologie et l'histoire des sciences peuvent apporter à un tel sujet. En effet, cette question des marchés biologiques est une question éminemment scientifique de choix des modèles pour représenter des phénomènes mutualistes. Or justement, l'épistémologie dispose des critères méthodologiques de sa discipline pour juger du rapport du modèle aux concepts et à l'objet naturel envisagé. Par ailleurs, dans la mesure où il s'agit foncièrement d'une mise en relation des sciences biologiques et des sciences économiques, en appliquant à des écosystèmes biologiques des principes de marché et de libre échange, l'épistémologie peut et doit s'intéresser à cette tentative transdisciplinaire. En tant que spécialiste de l'activité de connaissance scientifique et de son déploiement dans l'histoire et dans le champ des objets et des disciplines, il est supposé se situer avec le recul nécessaire pour déceler des indices de succès ou des biais de cette entreprise.

Il était assez clair dans notre introduction, que les modèles issus des travaux de Lotka et Volterra, et en général tous les modèles qui s'appliquent aux dynamiques de populations par voie d'analyse intégro-différentielle, n’atteignent pas les coûts et les bénéfices du mutualisme, lesquels sont au centre de la définition de ce phénomène biologique. Les recherches de Steven A. Frank ont pour avantage d'intégrer à la fois les coûts et les bénéfices. Comme dans les modèles issus des travaux de Gruner Graves, Peckham et Pastor, les coûts et bénéfices du mutualisme sont exprimés en termes d’augmentation ou de réduction de taux de croissance. Mais dans les travaux de Frank, ces taux de croissance sont ceux des génotypes et non ceux des populations comme telles. Ces modèles demeurent néanmoins des modèles de dynamique de populations,
où on ne regarde pas l’organisme individuel, ses besoins et ses productions mais les populations et éventuellement les caractères qui s’y expriment.

Au contraire, les travaux de Kathleen Keeler expriment le bénéfice du à la pollinisation entomophile par exemple, sans ignorer les fréquences d’individus sujets à cette forme de mutualisme dans une population, mais en tenant compte de valeurs théoriques comme la fitness des graines, le coût d’investissement pour la plante, etc. (Keeler 1981, 1985) 51. Une difficulté de ce type de modèle tient au caractère très théorique et difficilement mesurable des caractères envisagés. Les modèles de mesure de fitness des champignons mutualistes ou non mutualistes paraissent être plus proches de leur objet dans la mesure où on regarde un coût en eau, éléments minéraux, composés organiques, apports qui sont réputés mesurables.

Ce sont justement les champignons mycorhiziens qui ont donné lieu à une littérature sur les marchés biologiques. Le modèle donné par Mark W. Schwartz et Jason D. Hoeksema confronte les ressources des deux partenaires de la relation mutualiste. Ce modèle de spécialisation et d’échange est relativement simple : les individus de deux espèces A et B ont besoin de deux ressources pour croître et ils font l’expérience de l’échange dans l’acquisition de ces ressources 52. L’isocline d’acquisition en situation d’isolation correspond pour chaque individu « à la quantité maximale de ressources » qu’il peut acquérir en un an 53. En situation de mutualisme, la combinaison de ressources acquises est plus favorable et définit la fitness de l’individu, maximisée par le bénéfice mutuel. L’avantage de ce modèle est la simplicité et l’ancrage dans la théorie économique classique : il repose en effet sur la maximisation des profits par une combinaison judicieuse entre spécialisation et échange.

De fait, il semble épistémologiquement pertinent de penser une interaction entre deux partenaires biologiques où chacun cède à l’autre de son superflu pour en acquérir une ressource indispensable ; cependant, est-ce toujours le cas ? Du mutualisme au sens biologique ou ne fait-on que se rapporter au cas général des échanges de coopération réciproque ? Par ailleurs, dans certains cas d’interaction, les biologistes reconnaissent qu’on se situe sur un continuum parasitisme-mutualisme. Il est nécessaire qu’émerge « un bénéfice net pour les deux espèces » 54. De plus, le mutualisme est toujours une relation d’équilibre, susceptible de changements. Nous avons vu ici que les mycorhizes semblent particulièrement bien adaptées à ces modèles. Mais est-il ainsi de toutes les formes de mutualisme ? Outre la distinction entre relation obligatoire et relation facultative (les mutualismes obligatoires sont sans doute des lieux stables de « marchés biologiques »), il semble que les symbioses mutualistes se prêtent plus à ce type de modélisation à long terme que des mutualismes lâches, à fortiori
facultatifs, comme c’est le cas de certaines formes de pollinisation entomophile.

En conclusion, la prise en considération des coûts et des bénéfices est indispensable pour rendre compte du mutualisme, les modèles de dynamique des populations n’atteignent qu’une partie du phénomène ; mais les modèles de marchés biologiques ne sont sans doute qu’un aspect de cette prise en compte. Ils sont intéressants dans certains cas : les mycorhizes, certaines formes de mutualisme chez les oiseaux ou les poissons, etc. Dans ces modèles de marchés biologiques, il semble aussi important de mettre en valeur les mesures a posteriori du phénomène mutualiste et de se défier de la tentation de considérer le sujet biologique de manière trop anthropomorphique. Même si l’on peut repérer des stratégies évolutives, à la différence du sujet humain, le sujet biologique n’exerce pas de choix rationnel dans les échanges qu’il met en œuvre.
RÉFÉRENCES BIBLIOGRAPHIQUES

12 Kingsland S. E. (note 8), p. 158.

21 Frank, S. A. (note 13), S84.

23 x_{ij} représente le génotype j de l’espèce i et a est un coefficient constant pondérant l’apport des gènes du partenaire.

26 On trouve les expressions des équations de Kostitzin donnant les prédications de nombres d’individus des deux espèces associées x' et x'' en fonction des nombres d’individus libres x_1 et x_2, des nombres de couples symbiotiques x, de la natalité et de la mortalité des deux espèces à l’état libre et à l’état symbiotique, n_1, n_2, v_1, v_2, m_1, m_2, μ_1, μ_2, (du taux d’accroissement du nombre de couples symbiotiques, n, des nombres d’individus d’une espèce libérés de la symbiose par la mort de l’autre individu, β_1 et β_2, et de divers coefficients de concurrence vitale dans *Symbiose, parasitisme et évolution* et dans *Biologie mathématique*.

Boucher, James et Keeler ont souligné qu’historiquement, le travail de Kostitzin sur la symbiose n’a pas eu véritablement de postérité. Du fait de la croissance rapide des autres domaines de de l’écologie au vingtième siècle, le mutualisme perdit rapidement du terrain au profit de l’étude de la compétition et de la prédation. Malgré un grand élan sur ce sujet durant les années 1930, le travail théorique entrepris par Kostitzin resta presque complètement ignoré par la suite. Boucher, D. H., James, S., Keeler, K. H. (note 14), p. 318. Il semblerait pourtant que Kostitzin ait entrevu, de façon plus ample que Volterra et d’un point de vue biomathématique, le rôle de la coexistence des espèces, du parasitisme et de la symbiose, dans l’évolution. Témoin le passage de cette lettre n° 18, datée de 1937 : « Mon âme de naturaliste n’est pas d’accord avec vous sur l’interprétation des coefficients vitaux, mais mon âme de mathématicien comprend très bien toute la partie philosophique de votre travail : parmi tous les phénomènes vitaux, vous déterminez une région très étroite, mais dans ces limites vous construisez une biologie rationnelle, analogue à la mécanique rationnelle (…). C’est un progrès énorme ». Le travail de Volterra serait plus analytique mais moins étendu que celui de Kostitzin.

36 Keeler, K. H. (note 27), p. 120.

38 La plante supérieure est spécialisée dans la production de matière carbonée à partir de la photosynthèse, les mycorhizes facilitent l’absorption d’éléments
minéraux comme le phosphore, éléments qui seraient sans cela un facteur limitant pour la plante.

BIBLIOGRAPHIE

Van Beneden, P.-J. (1875), Les commensaux et les parasites dans le règne animal, 2ème édition, Paris: Baillière.