The two sides of the hourglass:analytic and syntheticapproaches in cancer research

Marta Bertolaso

Resumen


Consolidation of experimental science has brought about the triumph of the analytic perspective that decomposes nature in order to understand its molecular instances. This methodological approach reinforced the reductionism that has dominated empirical research in biomedicine over the last century. Cancer research constitutes an example. Nevertheless, the evolution of the interpretative models of its etiopathogenesis shows how different levels of biological organization might be involved in cancer origin and progression. New models have been challenging traditional reductionism, moving towards a systemic view that is posing an epistemological stance in cancer research, revealing the potentialities beyond a synthetic perspective in studying biological phenomena and showing how the level of causal explanation become crucial to understand cancer. A new reflection on the philosophy of causation seems to be required through the integration of both perspectives, in order to provide a comprehensive causal account of the neoplastic process.

Keywords: Cancer research, reductionism, biological complexity, biological causes, prediction, control.


Texto completo:

PDF

Referencias


Artigas, M. (1992), La inteligibilidad de la naturaleza, EUNSA, Pamplona, p. 87.

Baker, S. G., Kramer B. S. (2007), “Paradoxes in carcinogenesis: new opportunities for research directions”, BMC Cancer 7: 151–157.

Bertolaso M. (2009), “Towards an integrated view of the neoplastic phenomena in cancer research,” Hist. Phil. Life Sci. 31: 79-98.

Biava, P.M. (1999), “Complexity and cancer,” http://www.cesil.com/cesil99/ biavaeng.htm (Accessed March 2008).

Biava, P. M. (2002,) Complessità e biologia. Il cancro come patologia della comunicazione, Milano: Monadori.

Bissell, M. J., Hall, H. G., Parry, G. (1982), “How does the extracellular matrix direct gene expression?” J. Theor. Biol. 99: 31-68.

Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M., Petersen, O. W. (2002), “The organizing principle: microenvironmental influences in the normal and malignant breast,” Differentiation 70: 537-46.

Bizzarri, M., Cucina, A., Conti, F., D'Anselmi, F. (2008), “Beyond the Oncogene Paradigm: Understanding Complexity in Cancerogenesis,” Acta Bioth. 56: 173-196.

Bonnet, D., Dick, J. E. (1997), “Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Med. 3: 730-737.

Boveri, T. (1914), “Concerning the origin of malignant tumours,” Journal of Cell Science (2008) 121: 1-84.

Brent, R. L. (1980), “Radiation teratogenesis,” Teratology, 21: 281-298.

Bunge, M. (2004), Emergence and Convergence, Toronto: University of Toronto Press, pp. 40-52.

Burmeister, T. (2001), “Oncogenic retroviruses in animals and humans,” Rev. Med. Virol. 11: 369-80.

Dugas, R. (1954), La mécanique au XVIIe siècle, Paris: Neuchatel, Le Griffon.

Colditz, G. A., Sellers, T. A., Trapido, E. (2006), “Epidemiology identifying the causes and preventability of cancer?,” Nat. Rev. Cancer 6: 75.

Comings, D. E. (1973), “A general theory of carcinogenesis,” Proc. Natl. Acad. Sci. USA 70:3324-3328.

Cooper, G. M., Okenquist, S., SiLverman, L. (1980), “Transforming activity of DNA of chemically transformed and normal cells,” Nature 284: 415-421.

Dalerba, P., Cho, R. W., Clarke, M. F. (2007), “Cancer stem cells: models and concepts,” Ann. Rev. Med. 58: 267-84.

Damjanov, I. (1993), “Teratocarcinoma: neoplastic lessons about normal embryogenesis,” Int. J. Dev. Biol.37: 39-46.

Davies P. (1993), The Mind of God. The Scientific Basis for a Rational World, New York-London: Simon and Shuster.

Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S. A., Antoniades, H. N. (1983), “Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor,” Science 221: 275-277.

Einhorn, L. (1983), “Are there factors preventing cancer development during embryonic life?,” Oncodev. Biol. Med. 4: 219-229.

Fearon, E. R., Vogelstein, B. (1990), “Genetic model for coloreotal tumorigenesis,” Cell 61: 759-767.

Feinberg, A. P., Ohlsson, R., Henikoff, S. (2006), “The epigenetic progenitor origin of human cancer,” Nature Reviews Genetics 7: 21-33.

Feinberg, A. P., Tycko, B. (2004), “The history of cancer epigenetics,” Nature Rev. Cancer 4: 143–153.

Feinberg, A. P., Vogelstein, B. (1983), “Hypomethylation distinguishes genes of some human cancers from their normal counterparts,” Nature 301: 89-92.

Furth, J., Kahn, M. C. (1937),“The transmission of leukaemia of mice with a single cell,” Am. J. Cancer 31: 276-282.

Gatenby R. A., Vincent, T. L. (2003), “An evolutionary model of carcinogenesis,” Cancer Res. 63: 6212-20.

Gatenby, R. A., Frieden, B. R. (2002), “Application of information theory and extreme physical information to carcinogenesis,” Cancer Res. 62: 3675-84.

Gilbert S. F., Sarkar, S. (2000), “Embracing complexity: organicism for the 21st century,” Developmental Dynamics 219: 1-9.

Harris, H., Rawlins, J., Sharps, J. (1996), “A different approach to tumour suppression,” J. Cell. Sci. 109: 2189-2197.

Harris, M. (1971), “Cell fusion and the analysis of malignancy,” Proc. R. Soc. Lond. Biol. Sci. 179: 1-20.

Hart, I. R., Fidler, I. J. (1980), “Role of organ selectivity in the determination of metastatic patterns of B16 melanoma,” Cancer Res. 40: 2281-2287.

Jaki, S. L. (1966), The Relevance of Physics, Chicago: Chicago University.

Jones, P. A., Baylin, S. B. (2007), “The epigenomics of cancer,” Cell 128: 683.

Jones, P. A., Taylor, S. M. (1980), “Cellular differentiation, cytidine analogs and DNA methylation,” Cell 20: 85-93.

Kalluri R, Weinberg RA. (2009), “The basics of epithelial-mesenchimal transition,” J. Clin. Invest. 119: 1420-8.

Kitano, H. (2005), “Cancer as a robust system: implications for anticancer therapy,” Nature reviews/System. Biology, May 2005, p. 47.

Klein, G. (2002), “Perspectives in studies of human tumor viruses,” Front. Biosci. 7: d268.

Knudson, A. G. Jr. (1971), “Mutation and cancer: statistical study of retinoblastoma,” Proc. Nat. Acad. Sci. USA 68: 820-823.

Kuhn, T. S. (1962), The Structure of Scientific Revolutions Chicago: Chicago University.

Lakshmi M. S., Sherbert, G. V. (1974), Embryonic and Tumor Cells Interactions, NY: Karger, pp. 380-399.

Land, H., Parada, I. F., Weinberg, R. A. (1983), “Tumorigenic conversion of primary embryo fibrobiasts requires at least two cooperating oncogenes,” Nature 304: 596-602.

Lloyd, A. C, Obermüller, F., Staddon, S., Barth, C. F., McMahon, M., Land, H. (1997), “Cooperating oncogenes converge to regulate cydin/cdk complexes,” Genes Day 11: 663-677.

Lobo, N. A., Shimono, Y., Qian, D., Clarke, M. F. (2007), “The biology of cancer stem cells,” Annu. Rev. Cell. Dev. Biol. 23: 675-99, Table 1.

Luria, S. (1960), “Viruses, cancer cells, and the genetic concept of virus infection,” Cancer Res. 20: 677-88.

Maffini, M. V., Calabro, J. M , Soto, A. M., Sonnenchein, C. (2005), “Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma,” Am. J. Pathol. 167: 1405-1410.

Maffini, M. V., Soto, A. M., Calabro, J. M., Ucci, A. A., Sonnenschein, C. (2004), “The stroma as a crucial target in rat mammary gland carcinogenesis,” J. Cell. Sci. 117: 1495–1502

Marcos A. (2000), Hacia una filosofia de la ciencia amplia, Madrid: Tecnos.

Mayr, E. (1988), Towards a New Philosophy of Biology, Cambridge: Cambridge University Press.

Morton, B. (1974), “Reduction, hierarchies and organicism,” in Studies in the Philosophy of Biology, Ayala, F. J. and Dobzhansky, T. (Eds.), LA: University of California Press.

Mueller, M. M., Fusenig, N. E. (2004), “Friends or foes—bipolar effects of tumour stroma in cancer,” Nature Rev. Cancer 4: 839–849.

National Toxicology Program (2005), Report on Carcinogens, 11th ed., Bethesda Similarities, MD: US Dept of Health and Human Services, PHSNTP.

Nelson, W. G., De Weese, T. L., De Marso, A. M. (2002), “The diet, prostate inflammation, and the development of prostate cancer,” Cancer Metastasis Rev. 21: 3–16.

Nowell, P. C. and Hungerford, D. A. (1960), “A minute chromosome in human chronic granulocytic leukaemia,” Science 132: 1488-1501.

O'Malley, M. A. and Dupré, J. (2005), “Fundamental issues in systems biology,” Bioessays 27: 1270-1276.

Paget, S. (1889), “The distribution of secondary growths in cancer of the breast,” Lancet 1: 571-573.

Parkin, D. M. (2004), “International variation,” Oncogene 23: 6329.

Potter, V. R. (1964), “Biochemical perspective in cancer research,” Cancer Research 24: 1085-98.

Potter, V. R. (1968), “Mechanisms of carcinogenesis in relation to studies on minimal deviation hepatomas,” in Exploitable Molecular Mechanisms and Neoplasia, Austin, p. 587.

Potter, V. R. (1969), “Recent trends in cancer biochemistry: the importance of studies on fetal tissues,” Proc. Can. Cancer Conf.8: 9-30.

Potter, V. R. (1978), “Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny,” The 10th Walter Hubert Lecture, Br. J. Cancer 38: 1-23.

Reya, T., Morrison, S. J., Clarke, M. F., et al. (2001), “Stem cells, cancer, and cancer stem cells,” Nature 414: 105-111.

Rice, J.M. (1973), “An overview of transplacental chemical carcinogenesis,” Teratology 8: 113-125.

Rosenberg, A. (2006), Darwinian Reductionism, Chicago: Chicago University Press.

Root-Bernstein, R. S. (1999), “Complementarity and contradiction in cancer research: The role of hierarchies in carcinogenesis,” Anticancer Research 19: 4915-18.

Rous, P. (1910), “A transmissible avian neoplasm (sarcoma of the common fowl),” J. Exp. Med. 12: 696-705.

Ruley, H. E. (1983), “Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture,” Nature 304: 602-606.

Schaffner, K. F. (2007) “Theories, models and equations in systems biology,” in Systems Biology. Philosophical Foundations Boogerd F. C., Bruggeman F. J., Hofmeyer J. H. S., Westerhoff H. V. (Eds.), NY: Elsevier.

Shih, C., Shilo, B. Z., Goidfarb, M. P., Dannenberg, A., Weinberg, R. A. (1979), “Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin,” Proc. Natl. Acad. Sci. USA 76: 5714-5718.

Shih, C., Weinberg, R. A. (1982), “Isolation of a transforming sequence from a human bladder carcinoma cell line,” Cell 29: 161-169.

Sonnenschein, C., Soto, A. M. (1999), The Society of Cells: Cancer and Control of Cell Proliferation, NY: Bios Scientific.

Sonnenschein, C., Soto, A. M. (2000), “Somatic mutation theory of carcinogenesis: Why it should be dropped and replaced,” Molecular Carcinogenesis29: 205-211.

Sonnenschein, C. and Soto A. M. (2006), “Carcinogenesis and metastasis now in the third dimension—what's in it for pathologists?,” American Journal of Pathology 168: 363-366.

Sonnenschein, C. and Soto, A. M. (2008), “Theories of carcinogenesis: An emerging perspective,” Seminars in Cancer Biology 18: 372-377.

Soto, A. M., Sonnenschein, C. (2004), “The somatic mutation theory of cancer: Growing problems with the paradigm?,” BioEssays 26: 1097-1107.

Soto, A. M., Sonnenschein, C. (2005), “Emergentism as a default: Cancer as a problem of tissue organization,” J. Biosci. 30: 103-18.

Steel, D. M., Harris, H. (1989), “The effect of antisense RNA to fibronectin on the malignancy of hybrids between melanoma cells and normal fibroblasts,” J. Cell. Sci. 93: 515–524.

Tomatis, L., Mohr, V. (Eds.) (1973), Transplacental Carcinogenesis, Lyon: IARC Sci. Publ.

Trigg, R. (1993), Rationality and Science. Can Science Explain Everything?, Oxford: Oxford Univerity Press.

Vogelstein, B., Kinzler K.W. (2004), “Cancer genes and the pathways they control,” Nature Medicine 10: 789-799.

Von Bertalanffy, L. (1933), Modern Theories of Development (J. H. Woodger, trans.), NY: Harper.

Von Bertalanffy, L. (1952), Problems of Life, NY: Harper.

Waterfield, M. D., et al. (1983), “Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus,” Nature 304: 35-39.

Woodward, J. (2003), Making Things Happen—A Theory of Causal Explanation, Oxford: Oxford University Press.

Woodward, J. (2010), “Causation in biology: stability, specificity, and the choice of levels of explanation,” Biology and Philosophy25 (3): 287-318.

Xu R., Boudreau A., Bissell M. J. (2009), “Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices,” Cancer Metastasis Rev. 28: 167-76.

Yun, A. J. (2008), “The hegemony of empiricism: the opportunity for theoretical science in medicine,” Med. Hypotheses 70: 478-81.


Enlaces refback

  • No hay ningún enlace refback.


Revista semestral editada por el Centro de Estudios Filosóficos, Políticos
y Sociales Vicente Lombardo Toledano
de la Secretaría de Educación Pública,
la Universidad Autónoma Metropolitana-Iztapalapa y Edicions UIB de la Universitat de les Illes Balears.

Lombardo Toledano 51, Col. Ex-Hda. Guadalupe Chimalistac,
Del. Alvaro Obregón, C.P. 01050, México, D.F.
Tels. (5255) 5661-4679 y 5661-4987
Fax: (5255) 5661-1787