Sinaptogénesis y desarrollo de la morfología dendrítica de neuronas piramidales en la neocorteza del chimpancé parecidos a los de los humanos

Serena Bianchi, Cheryl D. Stimpson, Tetyana Duka, Michael D. Larsen, William G. M. Janssen, Zachary Collins, Amy L. Bauernfeind, Steven J. Schapiro, Wallace B. Baze, Mark J. McArthur, William D. Hopkins, Derek E. Wildman, Leonard Lipovich, Christopher W. Kuzawa, Bob Jacobs, Patrick R. Hof, Chet C. Sherwood

Resumen


Synaptogenesis and development of pyramidal neuron dentric morphology in the chimpanzee neocortex

Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ~25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (/Pan troglodytes/). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3-5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.

 

Key words: Evolution, Golgi stain, brain, ontogeny.


Texto completo:

PDF

Referencias


Anderson, S. A., Classey, J. D., Condé, F., Lund, J. S. y Lewis, D. A. (1995), “Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of monkey prefrontal cortex”, Neuroscience 67(1): 7–22.

Barton, R. A. y Capellini, I. (2011), “Maternal investment, life histories, and the costs of brain growth in mammals”, Proceedings of the National Academy of Sciences USA 108(15): 6169–6174.

Bianchi, S., et al. (2012), “Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: Regional specializations and comparison to humans”, Cerebral Cortex 10.1093/cercor/bhs239.

Bloss, E. B., et al. (2011), “Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex”, Journal of Neuroscience 31(21): 7831–7839.

Bose, M., et al. (2010), “Effect of the environment on the dendritic morphology of the rat auditory cortex”, Synapse 64(2): 97–110.

Boyd, R., Richerson, P. J. y Henrich, J. (2011), “The cultural niche: Why social learning is essential for human adaptation”, Proceedings of the National Academy of Sciences USA 108(Supl. 2): 10918–10925.

Burkart, J. M., Hrdy, S. B. y Van Schaik, C. P. (2009), “Cooperative breeding and human cognitive evolution”, Evolutionary Anthropology 18(5): 175–186.

Buttelmann, D., Carpenter, M., Call, J. y Tomasello, M. (2007), “Enculturated chimpanzees imitate rationally”, Developmental Science 10(4): F31–F38.

Cáceres, M., Suwyn, C., Maddox, M., Thomas, J. W. y Preuss, T. M. (2007), “Increased cortical expression of two synaptogenic thrombospondins in human brain evolution”, Cerebral Cortex 17(10): 2312–2321.

Carpenter, M. y Tomasello, M. (2006), “Joint attention and imitative learning in children, chimpanzees, and enculturated chimpanzees”, Social Development 4(3): 217–237.

Chugani, H. T., Phelps, M. E. y Mazziotta, J. C. (1987), “Positron emission tomography study of human brain functional development”, Annals of Neurology 22(4): 487–497.

Colonnier, M. y Beaulieu, C. (1985), “An empirical assessment of stereological formulae applied to the counting of synaptic disks in the cerebral cortex”, Journal of Comparative Neurology 231(2): 175–179.

Deacon, T. W. (1997), The Symbolic Species: The Coevolution of Language and the Brain. Nueva York: WW Norton & Company.

Dennis, M. Y., et al. (2012), “Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication”, Cell 149(4): 912–922.

Derrien, T., et al. (2012), “The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression”, Genome Research 22(9): 1775–1789.

DeSilva, J. M. (2011), “A shift toward birthing relatively large infants early in human evolution”, Proceedings of the National Academy of Sciences USA 108(3): 1022–1027.

DeSilva, J. M. y Lesnik, J. J. (2008), “Brain size at birth throughout human evolution: A new method for estimating neonatal brain size in hominins”, Journal of Human Evolution 55(6): 1064–1074.

Diamond, M. C. y Connor, J. R. J., Jr. (1982), “Plasticity of the aging cerebral cortex", Experimental Brain Research (Supl. 5): 36–44.

Elston, G. N., Benavides-Piccione, R. y DeFelipe, J. (2001), “The pyramidal cell in cognition: A comparative study in human and monkey”, Journal of Neuroscience 21(17): RC163.

Elston, G. N., Oga, T. y Fujita, I. (2009), “Spinogenesis and pruning scales across functional hierarchies”, Journal of Neuroscience 29(10): 3271–3275.

Fu X, et al. (2011), “Rapid metabolic evolution in human prefrontal cortex”, Proceedings of the National Academy of Sciences USA 108(15): 6181–6186.

Furlong, E. E., Boose, K. J. y Boysen, S. T. (2008), “Raking it in: The impact of enculturation on chimpanzee tool use”, Animal Cognition 11(1): 83–97.

Giedd, J. N., et al. (1999), “Brain development during childhood and adolescence: A longitudinal MRI study”, Nature Neuroscience 2(10): 861–863.

Gogtay, N., et al. (2004), “Dynamic mapping of human cortical development during childhood through early adulthood”, Proceedings of the National Academy of Sciences USA 101(21): 8174–8179.

Goyal, M. S. y Raichle, M. E. (2013), “Gene expression-based modeling of human cortical synaptic density”, Proceedings of the National Academy of Sciences USA 110(16): 6571–6576.

Grutzendler, J., Kasthuri, N. y Gan, W.-B. (2002), “Long-term dendritic spine stability in the adult cortex”, Nature 420(6917): 812–816.

Hill, J., et al. (2010), “Similar patterns of cortical expansion during human development and evolution”, Proceedings of the National Academy of Sciences USA 107(29): 13135–13140.

Huttenlocher, P. R. y Dabholkar, A. S. (1997), “Regional differences in synaptogenesis in human cerebral cortex”, Journal of Comparative Neurology 387(2): 167–178.

Jacobs, B. y Scheibel, A. B. (1993), “A quantitative dendritic analysis of Wernicke’s area in humans. I. Lifespan changes”. Journal of Comparative Neurology 327(1): 83–96.

Jacobs, B., Driscoll, L. y Schall, M. (1997), “Life-span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative Golgi study”, Journal of Comparative Neurology 386(4): 661–680.

Jacobs, B., et al. (2001), “Regional dendritic and spine variation in human cerebral cortex: A quantitative Golgi study”, Cerebral Cortex 11(6): 558–571.

Kabaso, D., Coskren, P. J., Henry, B. I., Hof, P. R. y Wearne, S. L. (2009), “The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging”, Cerebral Cortex 19(10): 2248–2268.

Koenderink, M. J. y Uylings, H. B. (1995), “Post-natal maturation of layer V pyramidal neurons in the human prefrontal cortex. A quantitative Golgi analysis”, Brain Research 678(1–2): 233–243.

Leigh, S. R. (2004), “Brain growth, life history, and cognition in primate and human evolution”, American Journal of Primatology 62(3): 139–164.

Liu, X., et al. (2012), “Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques”, Genome Research 22(4): 611–622.

Lonsdorf, E. V. (2006), “What is the role of mothers in the acquisition of termitefishing behaviors in wild chimpanzees (Pan troglodytes schweinfurthii)?”, Animal Cognition 9(1): 36–46.

Lonsdorf, E. V. y Bonnie, K. E. (2010), “Opportunities and constraints when studying social learning: Developmental approaches and social factors”, Learning and Behavior 38(3): 195–205.

Lonsford, E. V. (2006), “What is the role of mothers in the acquisition of termitefishing behaviors in wild chimpanzees (Pan troglodytes schweinfurthii)?”, Animal Cognition 9(1): 36–46.

Lyn, H., Russell, J. L. y Hopkins, W. D. (2010), “The impact of environment on the comprehension of declarative communication in apes”, Psychological Science 21(3): 360–365.

McFarlin, S. C., et al. (2012), “Early brain growth cessation in wild virunga mountain gorillas (Gorilla beringei beringei)”, American Journal of Primatology 75(5): 450–463.

Miller, D. J., et al. (2012), “Prolonged myelination in human neocortical evolution”, Proceedings of the National Academy of Sciences USA 109(41): 16480–16485.

Moser, M. B., Trommald, M. y Andersen, P. (1994), “An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses”, Proceedings of the National Academy of Sciences USA 91(26): 12673–12675.

Petanjek, Z., et al. (2011), “Extraordinary neoteny of synaptic spines in the human prefrontal cortex”, Proceedings of the National Academy of Sciences USA 108(32): 13281–13286.

Pollard, K. S., et al. (2006), “An RNA gene expressed during cortical development evolved rapidly in humans”, Nature 443(7108): 167–172.

R Development Core Team (2010), R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Radley, J. J., et al. (2006), “Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex”, Cerebral Cortex 16(3): 313–320.

Rakic, P., Bourgeois, J. P., Eckenhoff, M. F., Zecevic, N. y Goldman-Rakic, P. S. (1986), “Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex”, Science 232(4747): 232–235.

Robson, S. L. y Wood, B. (2008), “Hominin life history: Reconstruction and evolution”, Journal of Anatomy 212(4): 394–425.

Russell, J. L., Lyn, H., Schaeffer, J. A. y Hopkins, W. D. (2011), “The role of socio-communicative rearing environments in the development of social and physical cognition in apes” Developmental Science 14(6): 1459–1470.

Sacher, G. A. y Staffeldt, E. F. (1974), “Relation of gestation time to brain weight for placental mammals: Implications for the theory of vertebrate growth. The American Naturalist 108(963): 593–615.

Sakai, T., et al. (2011), “Differential prefrontal white matter development in chimpanzees and humans”, Current Biology 21(16): 1397–1402.

Sakai, T., et al. (2013), “Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain”, Proceeding of the Royal Society B: Biological Sciences 280(1753): 20122398.

Scheibel, M. E. y Scheibel, A. B. (1978), “The method of Golgi”, in R. T. Robertson (ed.), Neuroanatomical Research Techniques. Nueva York: Academic, pp 89–114. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K. y Van Hoesen, G. W. (2001), “Prefrontal cortex in humans and apes: A comparative study of area 10”, American Journal of Physical Anthropology 114(3): 224–241.

Semendeferi, K., et al. (2011), “Spatial organization of neurons in the frontal pole sets humans apart from great apes”, Cerebral Cortex 21(7): 1485–1497.

Shaw, P., et al. (2008), “Neurodevelopmental trajectories of the human cerebral cortex”, Journal of Neuroscience 28(14):3586–3594.

Sherwood, C. C., Bauernfeind, A. L., Bianchi, S., Raghanti, M. A. y Hof, P. R. (2012), “Human brain evolution writ large and small”, in M. A. Hofman y D. Falk (eds.), Progress in Brain Research. Amsterdam: Elsevier, pp 237–254.

Sherwood, C. C., Wahl, E., Erwin, J. M., Hof, P. R. y Hopkins, W. D. (2007), “Histological asymmetries of primary motor cortex predict handedness in chimpanzees (Pan troglodytes)”, Journal of Comparative Neurology 503(4):525– 537.

Shu, S. Y., Ju, G. y Fan, L. Z. (1988), “The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system”, Neuroscience Letters 85(2): 169–171.

Sin, W. C., Haas, K., Ruthazer, E. S. y Cline, H. T. (2002), “Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases”, Nature 419(6906): 475–480.

Spocter, M. A., et al. (2012), “Neuropil distribution in the cerebral cortex differs between humans and chimpanzees”, Journal of Comparative Neurology 520(13): 2917–2929.

Spruston, N. (2008), “Pyramidal neurons: Dendritic structure and synaptic integration”, Nature Reviews Neuroscience 9(3): 206–221.

Travis, K., Ford, K. y Jacobs, B. (2005), “Regional dendritic variation in neonatal human cortex: A quantitative Golgi study”, Developmental Neuroscience 27(5): 277–287.

Van der Gucht, E., Vandesande, F. y Arckens, L. (2001), “Neurofilament protein: A selective marker for the architectonic parcellation of the visual cortex in adult cat brain”, Journal of Comparative Neurology 441(4): 345–368.

van Praag, H., Kempermann, G. y Gage, F. H. (2000), “Neural consequences of environmental enrichment”, Nature Reviews Neuroscience 1(3): 191–198.

Whiten, A., et al. (1999), “Cultures in chimpanzees”, Nature 399(6737): 682–685.

Yadav, A., et al. (2012), “Morphologic evidence for spatially clustered spines in apical dendrites of monkey neocortical pyramidal cells”. Journal of Comparative Neurology 520(13): 2888–2902.

Yang, G., Pan, F. y Gan, W. B. (2009), “Stably maintained dendritic spines are associated with lifelong memories”, Nature 462(7275): 920–924.

Yuste, R. y Tank, D. W. (1996), “Dendritic integration in mammalian neurons, a century after Cajal”, Neuron 16(4): 701–716.


Enlaces refback

  • No hay ningún enlace refback.


Revista semestral editada por el Centro de Estudios Filosóficos, Políticos
y Sociales Vicente Lombardo Toledano
de la Secretaría de Educación Pública,
la Universidad Autónoma Metropolitana-Iztapalapa y Edicions UIB de la Universitat de les Illes Balears.

Lombardo Toledano 51, Col. Ex-Hda. Guadalupe Chimalistac,
Del. Alvaro Obregón, C.P. 01050, México, D.F.
Tels. (5255) 5661-4679 y 5661-4987
Fax: (5255) 5661-1787