El “darwinismo cuántico” de Zurek y su extrapolación a la evolución de los sistemas adaptativos
Resumen
Zurek’s “quantum Darwinism” and its translation into the evolution of adaptive systems
In this work I justify a scheme that favors a non-reductive integration between physical and biological approaches based on the notion of information as interpretation. I start with a discussion on the cross fertilization and feedbacks between physics and biology for it helps to explain Maxwells demon metaphor as a forerunner of a notion of information applicable to the problem of biological adaptation that is best conceived today as information gathering and using systems (IGUS) in the sense of Zurek. It is shown how IGUS by means of measurements generate informative correlations between micro-states (genotype) and macro-states (phenotype), and between macro-states (phenotype) and environment. I further examine Zureks decoherence theory dubbed “quantum Darwinism” according to which the environment eliminates most of the superpositions of quantum systems leaving only a set of preferred states, among which are chosen those that are in fact realized in the classical world. In this view IGUS are equated to non-conscious agents of quantum measurement, a posture that modifies Copenhagen interpretation without falling into the difficulties of the “many worlds” interpretation. I, thus, propose that in order to tackle the problem of biological adaptation, it would be important to understand information as IGUS’ interpretative activity thought as physical and/or biological systems that actualize an organizing potential in accordance to an “internal model” of systems environment interactions, so that they interpret physical perturbations as informative signals that orient structural adjustments to be adopted and the actions that are projected to the external milieu. To end up I show how this model may serve to account for the origin of adaptive mutations in bacteria and to formally describe developing epigenetic systems. In this way the classical debate between Lamarckian and Darwinian schools must be reframed and perhaps superseded as the new scheme of interpretation is validated with more experimental evidence. To conclude I argue that semiosis is the clue to justify the deep analogy that allows to establishing bidirectional bridges between physical and biological models of adaptive evolution.
key words. Quantum Darwinism, Neo-Lamarckism, natural selection, information, IGUS, adaptation, coherence, superposition, entanglement, sign, observer, measurement, ci Copenhagen interpretation, many worlds interpretation, epigenetics.
Texto completo:
PDFReferencias
Andrade, E. (2000), “From external to internal measurement: A form theory approach to evolution”, Biosystems 57 (2): 49-62.
Andrade, E. (2003), Los demonios de Darwin. Semiótica y termodinámica de la evolución biológica. Bogotá: Unibiblos, 2003.
Andrade, E. (2004), “On Maxwell’s demons and the origin of evolutionary variations: an internalist perspective”, Acta Biotheoretica 52: 17–40.
Andrade (2009a), “Darwin o el falso conflicto entre la teoría de la selección natural y la hipótesis de la pangénesis”, Acta Biol. Colomb. 14 S: 63-76.
Andrade, E. (2009b), La ontogenia del pensamiento evolutivo. Bogotá: Universidad Nacional de Colombia, Colección Obra Selecta.
Andrade, E. (2014a), “Integration of thermodynamic, quantum and hierarchical theories of information within the context of Peircean semiosis”, BioSystems 120: 10-20.
Andrade, E. (2014b), “La vigencia de la metafísica evolucionista de Peirce”, Revista Colombiana de Filosofía de la Ciencia XIV, 28: 83-121.
Anway, Matthew D., Andrea S. Cupp, Mehmet Uzumcu, and Michael K. Skinner. (2005), “Epigenetic transgenerational actions of endocrine disruptors and male fertility”, Science 308: 1466–1469.
Arai, J., Li, S., Hartley, D.M., & L.A. Feig1 (2009), “Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment”, J. Neurosci. 29: 1496-1502.
Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., & Yamato, I (2013), “Unifying cellular (neo)Darwinism and (neo)Lamarckism: A model of epigenetic evolution based on theory of open quantum systems”, Systems and Synthetic Biology. http://www.researchgate.net/publication/257719156 DOI: 10.1007/s11693-013-9109-3
Balbin, A. & Andrade, L.E. (2004), “Protein folding and evolution are driven by the Maxwell demon activity of proteins”, Acta Biotheoretica 52 (3): 173-200. www.kluweronline.com/issn/0001-5342/contents
Bateson, G. (1976), Pasos hacia una ecología de la mente. BsAs.: Carlos Lohlé.
Binder, P & Danchin, A. (2011), “Life’s demons: information and order in biology”, EMBO Reports 12, 6: 495-499.
Blackmore, S. (1995), The Meme Machine. Oxford: Oxford University Press.
Bordonaro, M. & Ogryzko, V. (2013), “Quantum biology at the cellular level. Elements of the research program,” arXiv:1304.0683 [q-bio.OT]
Bowler, P.J. (1983), The Eclipse of Darwinism: Anti-Darwinian Evolution Theories in the Decades Around 1910. Baltimore: Johns Hopkins University Press.
Brooks, D. & Wiley, E. O. (1988), Evolution as Entropy. Chicago: University of Chicago Press.
Cairns, J., Overbauch, J., Miller, S. (1988), “The origin of mutants”, Nature 335: 142-145.
Campbell, J. (2010), “Quantum Darwinism as a Darwinian process”, arxiv.org/pdf/1001.0745
Conrad, M. (2001), “Unity of measurement and motion”, BioSystems 60: 23–38.
Chaisson, E.J. (2001), Cosmic Evolution. The Rise of Complexity in Nature. Cambridge, Massachusetts: Harvard University Press.
Darwin, D. (1859), The Origin of Species by means of Natural selection or the Preservation of Favoured Races in the Struggle for Life. 1997. ElecBook London edition based on the First Edition published by John Murray, London.
Darwin C. (1868), Animals and Plants under Domestication. London: John Murray.
Davies, P.C.W. (2004), “Does quantum mechanics play a non-trivial role in life?”, BioSystems 78: 69-79.
Dawkins, R. (1976), The Selfish Gene. Oxford: Oxford University Press.
Dennet, D. (1995), Darwin’s Dangerous Idea: Evolution and the Meanings of Life. New York: Simon and Schuster; London: Allen Lane.
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mancal T, Cheng, Y.C., Blankenship, R.E., Fleming, G.R. (2007), “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems”, Nature 446, 782-786.
Everett, H. (1957), “’Relative state’ formulation of quantum mechanics”, Reviews of Modern Physics 29: 454-462.
Foster, P.L., Cairns, J., (1992), “Mechanisms of directed mutation”, Genetics 131: 783-789.
Fox Keller, E. (2000), Lenguaje y vida. Metáforas de la biología en el siglo XX. BsAs: Manantial.
Gabora, L., Scott, E.O. & Kauffman, S. (2013), “A quantum model of exaptation: Incorporating potentiality into evolutionary theory”, Progress in Biophysics and Molecular Biology 113: 108 -116.
Giere, R. (1999), Science Without Laws. Chicago: The University of Chicago Press
Gould, S.J. (2002), The Structure of Evolutionary Theory. Cambridge, Massachusetts: The Belknap Press of Harvard University Press.
Hall, BG. (1991), “Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitutions”, Proc. Natl. Acad. Sci. USA 88: 5882-5886
Hall B.G. (1992), “Selection-induced mutations occur in yeast”, Proc.Nac. Acad.USA 89: 4300-4303
Hall, B.G. (1997), “Spontaneous point mutations that occur more often when advantageous than when neutral”, Genetics 126: 4-16
Ho Mae-Wan, (1998), The Rainbow and the Worm, the Physics of Organisms. Singapore/River Edge, NJ: World Scientific.
Igamberdiev, A.U. (2003), “Living systems are dinamically stable by computing themselves at the quantum level”, Entropy 5: 76-87.
Igamberdiev, A.U. (2004), “Quantum computation, non-demolition measurements, and reflective control in living systems”, BioSystems 77: 47-56.
Igamberdiev, A.U. (2005), “The computation power of living systems is maintained by decoherence-free internal quantum states,” in FIS Third Conference on the Foundations of Information Science, Paris, 4-7 July
http://www.mdpi.org/fis2005/
Igamberdiev, A.U. (2008), “Objective patterns in the evolving network of nonequivalent observers”, BioSystems 92: 122-131.
Jablonka, E. and M.J. Lamb (1998), “Epigenetic inheritance in evolution”, Journal of Evolutionary Biology 11: 159-183.
Jablonka, E. and M.J. Lamb. (2006), Evolution in Four Dimensions. Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. Cambridge, Massachusetts: A Bradford Book. The MIT Press.
Heisenberg, W. (2007), Physics and Philosophy, Harper Perennial Modern Classics edition, cited by E. Frazer on his blog “Heisenberg on act and potency”.
Kauffman, S. (1993), The Origins of Order: Self-Organization and Selection in Evolution. New York: Oxford University Press.
Kauffman, S. (2000), Investigations. NY: Oxford University Press.
Kauffman, S. (2008), Reinventing the Sacred: A New View of Science, Reason, and Religion. NY: Oxford University Press.
Kitto, K. (2014), “A contextualised general systems theory”, Systems 2: 541-565; doi: 10.3390/systems2040541
Longo, G. & Montévil, M. (2011), “From physics to biology by extending criticality and symmetry breakings”, Progress in Biophysics and Molecular Biology 106: 340-347.
Luria,S.E, & Delbruck,M. (1943), “Mutations of bacteria from virus sensitivity to virus resistance”, Genetics 28: 491-511.
Mcfadden, J. & Al-Khalili, J. (1999), “A quantum mechanical model of adaptive mutation”, BioSystems 50: 203-211.
McFadden, J. (2000), Quantum Evolution: Life in the Multiverse. NY: Harper Collins.
Matsuno, K. (1989), “Internal measurement”, in Protobiology: Physical Basis of Biology. CRC Press, Boca Raton, FL, USA.
Matsuno, K. (2006), “Forming and maintaining a heat engine for quantum biology”, BioSystems 85 (1): 23-29.
Matsuno, K. (1996), “Internalist stance and the physics of information”, BioSystems 38 (2–3): 111–118.
Maxwell, J.C. (1999), Escritos científicos. Barcelona: Círculo de Lectores.
Mikulecky, D. (2001), “The emergence of complexity: science coming of age or science growing old?” Computers & Chemistry 25 (4): 341–348.
Newman, S. (2009), Evolution is not Mainly a Matter of Genes. The 200th anniversary of Charles Darwin. NY: New York Medical College.
Ogryzko, V. (1997), “A quantum-theoretical approach to the phenomenon of directed mutations in bacteria (hypothesis)”, Biosystems 43:83-95.
Ogryzko, V.V., (2009), “On two quantum approaches to adaptive mutations in bacteria”, NeuroQuantology 7(4).
Oyama, S. (2000), The Ontogeny of Information. Developmental Systems and Evolution. Durham: Duke University Press.
Pattee, H. (1995), “Evolving self-reference: matter, symbols, and semantic closure”, in Rocha, L. (ed.), Communication and Cognition—Artificial Intelligence (special issue on self-reference in biological and cognitive systems) 12(1-2): 9-27.
Peirce, C. S. (1891), “La arquitectura de las teorías” (original en: The Monist I, pp.161-76; incluido en: [CP 6. 7-34]) (trad. Marinés Bayas, http://www.unav.es/gep/ArquitecturaTeorias.html, 2004).
Peirce, C.S. (1931–1958), Collected Papers of Charles Sanders Peirce, vols. 1-8. Hartshorne, C., Weiss, P., Burks, A.W. (eds.), Cambridge, Mass: Harvard University Press.
Prigogine, I. & Stengers, I. (1984), Order out of Chaos. Man s New Dialogue With Nature. NY: Bantam Books.
Roederer, J.G. (2012), The Role of Pragmatic Information in Quantum Mechanics and the Quantum-Classical Transition, arXiv: 1108.0991v2 [quant-ph] 28 Jul 2012).
Rosen, R. (2000), Essays on Life Itself. Complexity in ecological systems series. New York: Columbia University Press.
Salthe, S. (2004), “The spontaneous origin of new levels in a scalar hierarchy”, Entropy 6: 327-343.
Salthe, S. (2010), “The development (and evolution) of the universe”, Foundations of Science 15: 357-367.
Schneider, E.D. & Kay, J.J. (1994), “Life as a manifestation of the second law of thermodynamics”, Mathematical and Computer Modelling 19, 6-8: 25-48.
Schneider, E.D. & Sagan, D. (2005), Into the Cool. Energy Flow, Thermodynamics and Life. Chicago: The University of Chicago Press.
Schroedinger, E. (1944), What Is Life? Cambridge: Cambridge University Press.
Shapiro, J.A. (2013), “How life changes itself: the read-write (rw) genome”, Physics of Life Reviews 10(3): 287-323.
Slack, J. (2002), “Conrad Hal Waddington, the last Renaissance biologist?”, Nature Reviews Genetics 3: 889-895.
Swenson, R. (1989), “Emergent attractors and the law of maximum entropy production: Foundations to a theory of general evolution”, Systems Research 6: 187-197.
Sollars V., Lu X, Xiao L., Wang X., Garnkel M.D., & Ruden, D. M. (2003), “Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution”, Nature Genetics 33: 70-74
Sotolongo, P y Delgado, C.J. (2006), La revolución contemporánea del saber y la complejidad social. Hacia unas ciencias sociales de nuevo tipo. 1a ed. - Buenos Aires: Consejo Latinoamericano de Ciencias Sociales - CLACSO (Campus Virtual de CLACSO dirigida por Gabriela Amenta).
Steele D.F., Jinks-Robertson S. (1992), “Examination of adaptive reversion in S. cerevisiae”, Genetics 132.9-21.
Tegmark, M. (1999), “The importance of quantum decoherence in brain processes”, Phys. Rev. E. 14194-4206. arxiv.org/abs/quant ph/9907009
Thompson, W., Baron Kelvin. (1911), Mathematical and Physical Papers, Cambridge University Press, Inglaterra. Citado en Fox Keller, E. 2000. Lenguaje y Vida. Metáforas de la biología en el siglo XX. BsAs: Manantial.
Ulanowicz, E.E. (2009a), A Third Window. Natural Life beyond Newton and Darwin. West Conshohocken, Pennsylvania: Templeton Foundation Press.
Enlaces refback
- No hay ningún enlace refback.
Revista semestral editada por el Centro de Estudios Filosóficos, Políticos
y Sociales Vicente Lombardo Toledano de la Secretaría de Educación Pública,
la Universidad Autónoma Metropolitana-Iztapalapa y Edicions UIB de la Universitat de les Illes Balears.
Lombardo Toledano 51, Col. Ex-Hda. Guadalupe Chimalistac,
Del. Alvaro Obregón, C.P. 01050, México, D.F.
Tels. (5255) 5661-4679 y 5661-4987
Fax: (5255) 5661-1787